

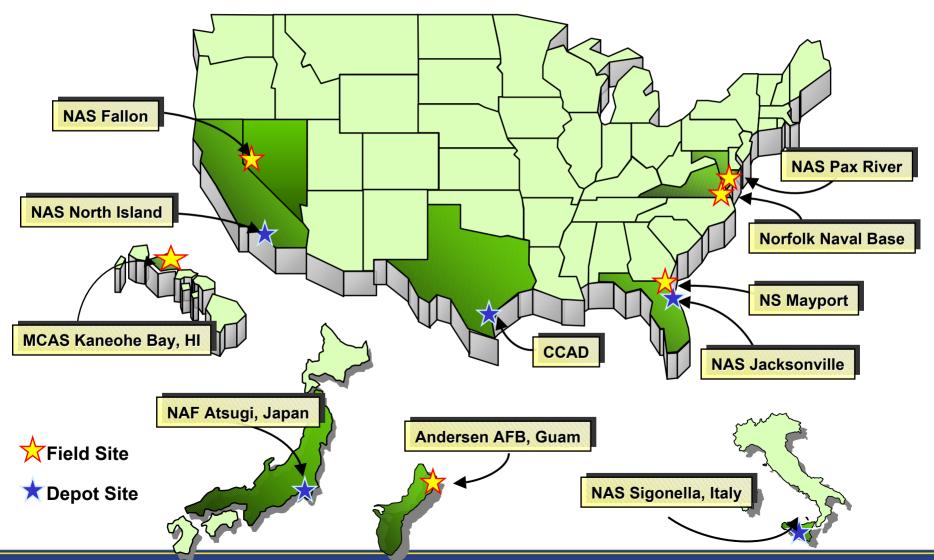
Sustainable IMP Test Bed Facility For H-60 (Navy SeaHawk) Helicopters

0817 Pollution Abatement Ashore Program
23 March 2004

Technical POC

NFESC, Code 421

Phone: (805) 982-1302


Management POC

NFESC, Code 42PM

Phone (805) 982-1674

Background- IMP Brings Maintenance Artisans to the Aircraft

Objective

- Develop and evaluate Sustainable IMP "Green" Test bed Facility:
 - Modular, flexible maintenance operations
 - Integrate P2 technologies and equipment
 - Rigorous control of HazMat
 - Use of environmentally preferable products
 - Create healthful working environment
- Support the Navy's transition from the traditional OI&D maintenance to IMP phased maintenance

Navy EQ Requirements

Requirements	Priority	Requirement Title
2.l.01.g	High	Control/Reduce emissions from Coating, Stripping, and Cleaning Operations
2.l.01.q	High	Control of VOC and HAP Emissions
3.l.04.e	High	Minimize Paint application wastes
3.II.03.a	High	Non-VOC/ODS Solvents and Cleaning Systems for Aircraft/Weapons and Shipboard/Shore Side Applications

Problem Statement/Drivers

- Many MH-60 Maintenance Operations use Hazardous Materials for cleaning and corrosion control.
- Paint Stripping Operations and Repainting Operations (PMI-4 maintenance requirements):
 - Creates Hazardous Air Pollutants (HAPs)
 - Uses Volatile Organic Compounds (VOCs)
 - Generates large amounts of paint waste (HAZMAT & HAPs)
- IMP Operations must be completely cost neutral
 - No MILCON
 - No major facility investments
 - Must be operational on delivery of aircraft

Problem Statement/Drivers

- ALL OPERATIONS MUST COMPLY WITH FEDERAL, STATE AND LOCAL REGULATIONS
 - National Emissions Standards for Hazardous Air Pollutants (NESHAP)
 - Requires tracking of 189 HAPs
 - National Ambient Air Quality Standards (NAAQS)
 - Air Quality Management Districts regulate VOCs
 - Require emission control equipment
 - Limit VOC content of solvents
 - Process ban

Milestones & Major Deliverables

	0	1	1	1	1	2	2	2	2	3	3	3	3	4	4	4
MILESTONE	2001		2002			2003				2004						
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3 (Q4
1. •Initiation Decision											•					
2. •Technology Assessment																
3. •Conduct Site Assessmen	nt															
4. •Test bed Site Selection																
5. •Test Bed Design																
6. •Install Technologies																
7. •Monitor Performance																
8. •Document Results																

PRODUCTS

•	Initiation Decision Report	'01
•	Technology Assessment Report	'02
•	IMP Test Bed Design Drawings	'03
•	Final Report of IMP Test Bed Results	'04

Approach

1. Initiation Decision Report

 Evaluate IMP deployment sites and determine if P2 products will work in the operational H-60 environment; and what benefits are to be derived

2. Site Assessment Technology Assessment-

- Evaluate technology/infrastructure shortfalls at IMP deployment sites and determine sustainable P2 products that will work in and operational H-60 environment
- Partner with NAVAIR WIPT For Environment, PPEP program, Energy
 Conservation, Water Conservation and other programs to select products to insert into the H-60 program

3. Conduct H-60 Site Assessment

Evaluate IMP sites to host test bed

4. Test Bed Site Selection

Evaluate available buildings and secure approval to implement test bed

5. Test Bed Design

Develop drawings, acquire H-60 approval

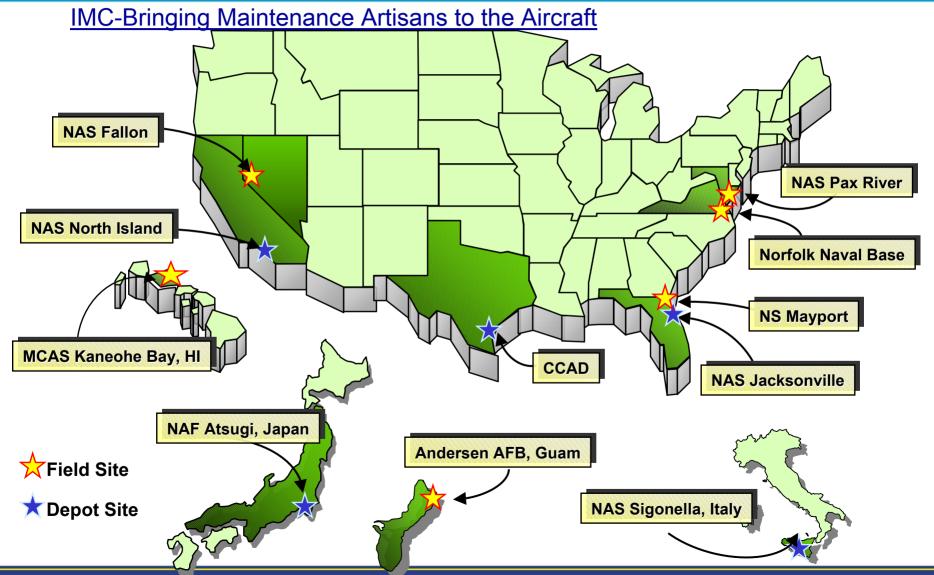
Approach (Continued)

6. Install Technologies

 Purchase and install sustainable processes (i.e., equipment) into a selected building

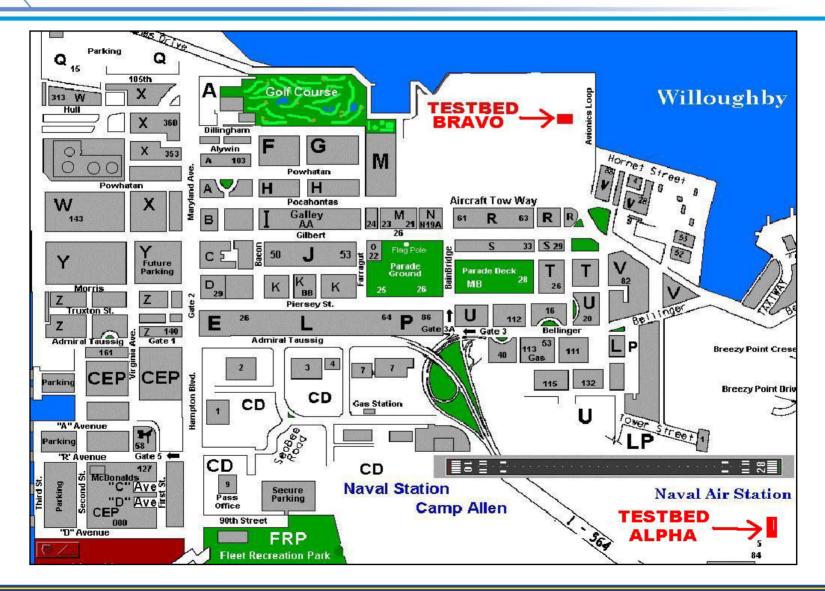
7. Monitor Performance

- Gather and analyze performance data
- Define data collection requirements

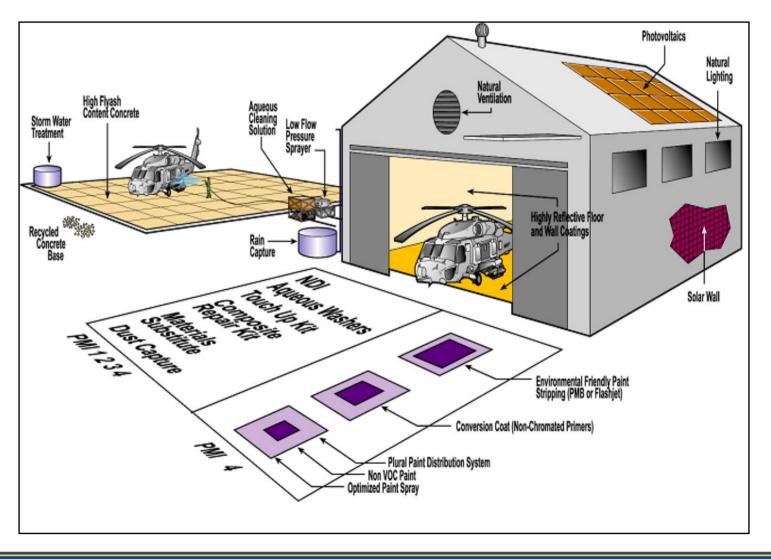

8. Document Results

- Collect data from operational environment
- Analyze test bed results
- Document (via a Technical Data Package) the lesson learned to all IMP sites.
- Technology transfer-Assist NAVAIR in the standing up secondary H-60 IMP sites
- Transfer lessons learned to other platforms currently implementing IMP

•MAIN GOAL- IMPROVE READINESS,- IMPROVE EFFICIENCY, ESOH COMPLIANCE, & SAVE \$'S


MS#3-Conduct H-60 Site Assessment

MS#4- Norfolk Test bed Site Selection



MS#5-Development of Test Bed Design

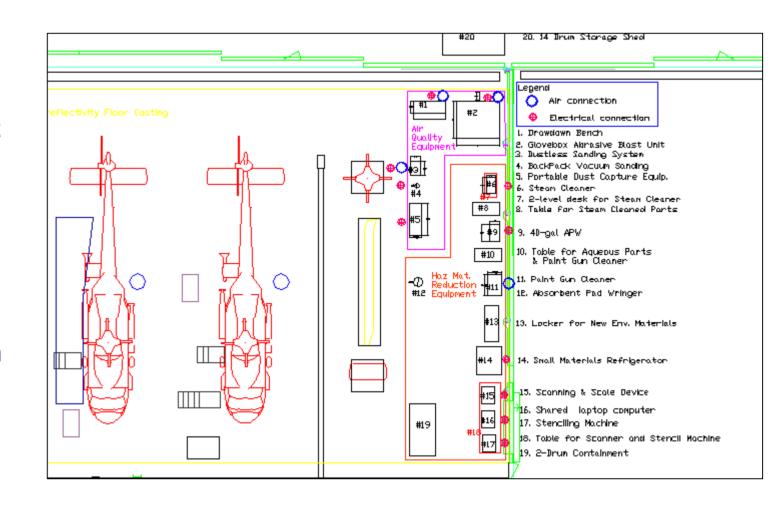
Notional Concept For an IMP Test Bed

MS#6-Potential Technology Sources

Programs

- PPEP
- NELP
- NAVAIR SYSCOM
- JGPP
- W2210 P/ LMTCE Products
- · Y0817
- Energy Program
- Water Conservation
- Recycling Program

Technologies


- Paint Application
- Paint Removal
- Parts Washing
- Dust Capture
- Non-destructive Inspection
- Composite Repair
- Corrosion Control
- Parts Storage Control
- Conversion Coating
- Metal Bonding
- Sealants
- Dry Steam Cleaning
- Abrasive Processes
- Degreasing
- Stenciling
- Paint Gun Cleaner

MS#6 -Install Technologies

Installing **IMP Equipment** At **LP-167**

Rendering 1st **Generation**

MS#6-Install Technologies

Installing
Technologies
Into
LP-167

Abrasive Blast Glove Box

MS#7-Monitor Performance and Document

(PMF Air Flow)

MS#7 Results: Before/After Comparison

Before	After
VOC Emissions Control	Install new paint systems to eliminate VOC emissions
NESHAP Emissions Control	Eliminate HAP containing materials that meet mission needs
HAZMAT Management, Toxic Release Inventory (TRI) Reportable Chemicals	Eliminate/Substitute Materials and processes

Before

After

MS#8 Benefits: ROI Calculation based on PMF*

Project Cost (PC) (Corrosion Prevention and Control \$ + Other cost):

Assumptions:

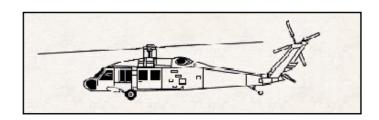
- i. Cost of PMF: \$500K
- ii. Number of sites implementing the PMF: 6 sites
- iii. Number of aircraft striped per year: 6
- iv. Cost of transport to nearest primary site: Per aircraft-three aircraft req'd: \$15K** X 3= \$45K (**transport cost can vary from \$15K to \$500K per aircraft depending on site location)
- v. Life of the PMF- 10 years
- vi. Elimination of Methylene Chloride use- \$5K per site X 6= \$80K
- vii. Total savings= \$270 + \$80K= \$350K

Useful Life Savings (ULS):

Based on the above assumptions $350K \times 10 = 3.5M$ will be spent transporting the aircraft to a primary site for stripping and painting.

* Assumption: Implementing 6 PMF at 6 different deployment sites.

Benefit: Sustainability


Improvement Scale

Milestones

		<u>Planned</u>	<u>Actual</u>	<u>Planned</u>
1.	Initiation Decision Report	9/01	11/01	
2.	Technology Assessment	1/02	ongoing	
3.	Conduct Site Assessment	3/02	03/02	
4.	Test bed Site Selection	5/02	05/02	
5 .	Test Bed Design	8/02	12/02	
6.	Install Technologies (PMF)	9/03	4/04	
7 .	Monitor Performance	3/04		6/04
8.	Document Results	5/04		8/04

Summary of Accomplishments to Date MS#6 & #7

SUMMARY

- Installed 25 Pieces Of PPEP Equipment Into NAS Norfolk Test Bed.
- Purchased \$1M In IMP Support Equipment For NAVAIR IMP Sites
- Developed PMF Concept
- Tested Prototype PMF
- Designed PMF For Guam, KBAY & Norfolk
- Continued Monitoring And Tracking At Norfolk

Accomplishments to Date MS#6 (Cont)

PMF
Cost Is
1/3 to 1/2
That of
A Conventional
Design.
Approximate cost

\$500K

Sized for H-60 at H=21',L=60', W=24'

Accomplishments to Date MS#6 & #7 (Cont)

- Installation and Monitoring Of Sustainable Equipment At Norfolk
 - Development of Optimized P2 Equipment Layout Drawings
 - Performed Metrics Study
 - Installation of Reflective Floor Coating
 - Installation of 25 Pieces of P2 Equipment
 - Installation of Performance Monitoring Equipment
 - Installation of Hazmat/hazwaste Management System
 - Performed Field Tests and Surveys

PMF Development

- Developed PMF Paint and Depaint Specification and Drawing Package For H-60 and H-53 Helo
- Designed and Constructed Prototype
- Performed PMF OSH Analysis
- Performed Ventilation Tests
- Performed Light and Sound Tests
- Performed Fabric Damage Test

Accomplishments to Date MS#7 (Continued)

Test And Monitored PMF

- Portability
- PMB Containment
- Logistic Requirement

Start-up Requirements
Installation Requirement
Support Equipment Requirements
Stowage
Equipment Interface

ESC Recognized As Technical Expert In Facilities And P2 Equipment Required For Standing Up PMI 4

- PMA
- Depots
- Platform Sponsor
- AIRPAC & AIRLANT
- NAVAIR HQ
- Imp Site Coordinators
- Maintenance Officers

Accomplishments to Date MS#7 & #8 (Continued)

Test And Monitor –Evaluation At Norfolk

System Effective

Lighting Improvement

Energy Use

Water Usage

Morale Improvement

Safety

Efficiency

Man-hour Reduction

Dollar Saved

HAZMAT/HAZWASTE Tracking

Document Lessons Learned

Research with Paint Expert On New Zero VOC Paint

Managing PMB

Economic

Accomplishments to Date MS#8 (Ongoing)

- Final Tech Data Package
 - Compendium Of Sustainable P2 Equipment
 - Include Env. Preferable Materials
 - IMP Process Flow Diagrams
 - Facilities Specification Requirements
 - PPEP Equipment Flow Chart
 - Test Bed Monitoring
 - OSH Analysis and Certification
 - Economic Analysis
 - PMF Drawings and Specifications
 - Lessons Learned-environmental Permitting
 - Photo Documentation
 - Logistics Analysis

Final Efforts

- PMF Ventilation Certification
- Portability
- Leakage
- Durability Of Fabric Material
- Evaluate Air wall Dual Usage
- OSH Study And Approvals
- Finalize Logistics For PMF Deployment
- Test Maintenance Stand At Norfolk
- Finalize Prototype Scanner (HAZMAT/HAZWASTE Management System) At Norfolk
- Deploy PMF
- Final Documentation

Summary of Implementation Accomplishments

- Coordinated With NAVAIR, WIPT, JG-PP, Regional Engineers, and EPA
- Distributed White Papers, economic Analysis, Resolution Papers, and Supported Permit Applications.
- PMF Being Reviewed by NAVFAC Fire Marshall.
- H-60 Class desk Requested ESC To Brief Test Bed and PMF Development at NAPRA-Atsugi, PAX River, and North Island.
- PMF Prototype Available For Demonstration.
- Support IMP Transition And Potential Use Of PMF At:
 - -Guam
 - -Norfolk
 - -Kaneohe Bay
 - -Okinawa
 - -Yuma
 - -Camp Pendleton
 - -Army- Puerto Rico
- Main T2 Tool- Via Procurement Spec & Consultation

Accomplishments to Date (Implementation)

Leveraged Funds

- Secured \$30K for Norfolk Test bed site assessment from NAVAIR
 3.0.
- Secured over \$250K value of equipment from PPEP to support test bed.
- Secured \$800K to procure sustainable equipment for Norfolk Test bed, KBAY and Guam PMF.

NORFOLK SITE APPROVAL & COORDINATION

- Airfield Manager
- •AIMD
- Squadrons
- DEPOT Jacksonville/IMP Site Coordinator
- •PMA 299
- •Air LANT
- NAVAIR HQ
- **•LANTDIV**
- •PW, ROIC, Regional Eng, Regional Environmental
- Wing Maintenance Leadership

Accomplishments to Date (Implementation)

IMP CONSULTATION

- DEVELOPED PMI 4 PROCESS FLOW DIAGRAM
- REQUESTED TO ATTEND IMP START-UP MEETINGS
- REQUESTED TO BRIEF TEST BED AND PMF @:
 - GUAM
 - ATSUGI
 - PAXTUXENT RIVER
 - NORTH ISLAND
 - CAMP PENDLETON
 - KBAY
- REQUESTED TO PROCURE SUSTAINABLE BLAST AND PAINT BOOTHS.
- REQUESTED TO REVIEW OKINAWA BLAST/PAINT BOOTH SPECIFICATION FOR H-1.

PLATFORMS REQUESTING INFO ON PMF

- H-1
- AV-8B
- H-53
- HUEY
- ARMY ROTARY WING
- PRIVATE INDUSTRY
- BLASTOFF INC

Logic Model for Sustainable IMP Test Bed Facility in support of H-60 SeaHawk Helicopters

Navy Benefits	Ability to carry out IMP maintenance at Secondary sites with improved efficiency, EOSH compliance and reduced costs										
Customer Capability	In addition to being able to comply with local EOSH regulations, the site can conduct paint/depaint operations in PMI-4										
Products	(1) A TDP which will list the lessons learned in the establishment of the IMP Test Bed. (2) Documented performance of P2 and other equipment used in H-60 maintence. (3) A prototype PMF (3-in-1) for use at IMP Secondary sites.										
Project Milestones	FY04- Finalize equipment Installation and testing. Continue evaluating and monitoring of IMP test bed at NAS Norfolk. Complete evaluation of a PMF prototype. Deployment of the PMF.										
Funding	\$M FY00 FY01 FY02 FY03 FY04 Current 0.00 0.16 0.26 0.58 0.06 Baseline 0.00 0.16 0.26 0.58 0.06										

Questions & Discussion?

THANK YOU!

Background-- Key Acronyms

- •IMP- Integrated Maintenance Plan
- ASPA- Aircraft Service Point Adjustment
- SDLM-Standard Depot Level Maintenance
- RCM- Reliability Centered Maintenance
- PMF- Portable Maintenance Facility
- PMI- Planned Maintenance Interval
- •O, I & D- Organizational, Intermediate and Depot Level Maintenance,
- •H-60- The Navy's Seahawk Helicopter— The Multiuse MH-60

Approach- Technology Assessment

Planned Maintenance Intervals (PMI)

PMI 1 (yr 2)	•Fittings •Upper Cabin Str •Flight Controls •CPC Fogging			
PMI 2 (yr 4)	•Fittings •Upper Cabin Str •Flight Controls •CPC Fogging	•Fittings •Extended Pylon Str •Cabin Zonal •Transition Zonal •Paint Assessment	•Fittings •Lower Cabin Str •Fuel Cell Zonal •Floor Boards •Mission Systems	
PMI 3 (yr 6)	•Fittings •Upper Cabin Str •Flight Controls •CPC Fogging			
PMI 4 (yr 8)	•Fittings •Upper Cabin Str •Flight Controls •CPC Fogging		•Fittings •Lower Cabin Str •Fuel Cell Zonal •Floor Boards •Mission Systems	•Fittings •Nose Zonal •Tail Cone Zonal •Tail Pylon Zonal •MRP Zonal •Strip and Paint

Approach- Technology Assessment

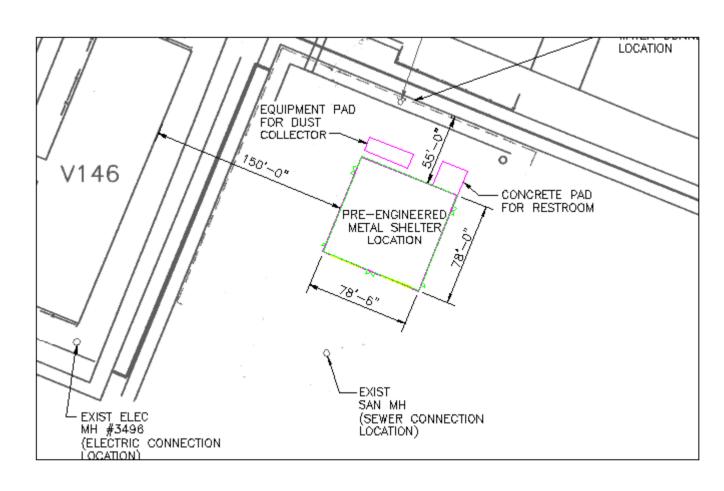
•MAIN GOAL- IMPROVE READINESS,- IMPROVE EFFICIENCY, ESOH COMPLIANCE, & SAVE \$'S

A TYPICAL H-60 MAINTENANCE AREA

Potential Technology Types (Cont.)

- HAZMAT Containment Pads
- High Reflectivity Floor Coatings
- High Reflectivity Wall Coatings
- Natural Ventilation
- Photovoltaic
- Solar Wall Technologies
- Wind Power
- Natural Lighting
- Work Area Lighting Control
- HVAC System Optimization

- Water Conservation
- Storm Water Treatment
- Low Flow Pressure Sprayers
- Rain Capture & Reuse Devices
- Recycling Technologies
- Recycled Concrete Base
- Use of High Fly Ash Content Concrete
- Fourier Transform Infrared Detection Devices


Approach-Install Technologies

Locating
the new
IMP
Paint/
Depaint
Facility
At
V-88

Proposed site for new Corrosion

Control facility

Approach-Install technologies

INSTALLING
TECHNOLOGIES
INTO
LP-167

POWER
PRESSURE
WASHER

Before/After Comparison

IMP TEST BED AREA

IN

LP-167

BEFORE

Before/After Comparison

Example-- REFLECTIVE FLOOR COATINGS-- AFTER

IMP

TEST BED

AREA

IN

LP-167


AFTER

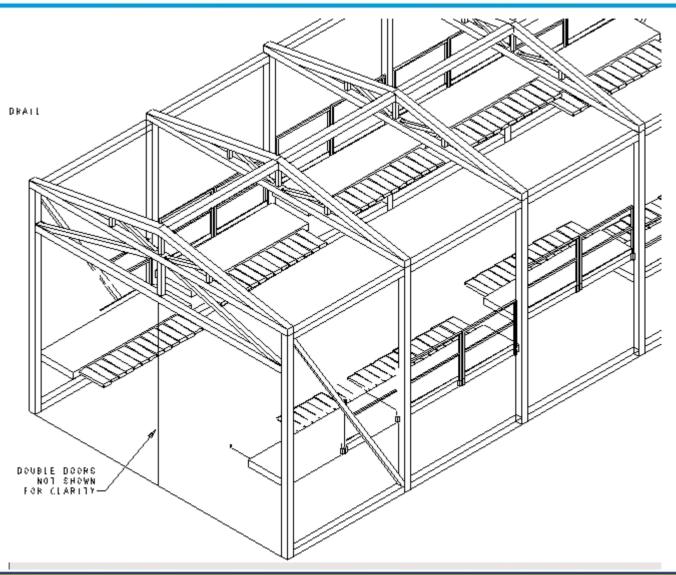
Approach-Install technologies

Portable
Maintenance
Facility
(PMF)

IMP
TEST BED
EQUIPMENT
USE

PROOF VACUUM

Approach-Install technologies-PMF



- Can Be Assembled and Operational within Two Weeks
- Re-locatable
- Designed for IMP Operations At Activities With Less Than 5 Aircraft Per Year.

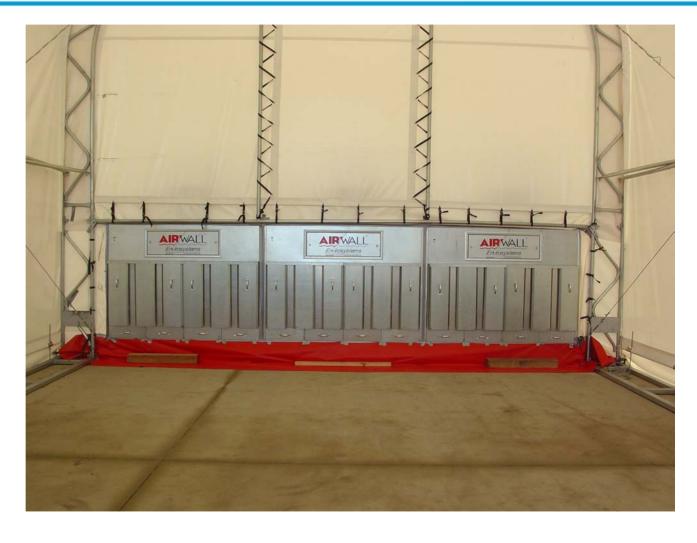
PMF First Generation

PMF
Ventilation
System
Employs
Three (3)
Air Walls

Flow Rate Totaling 30,000 CFM

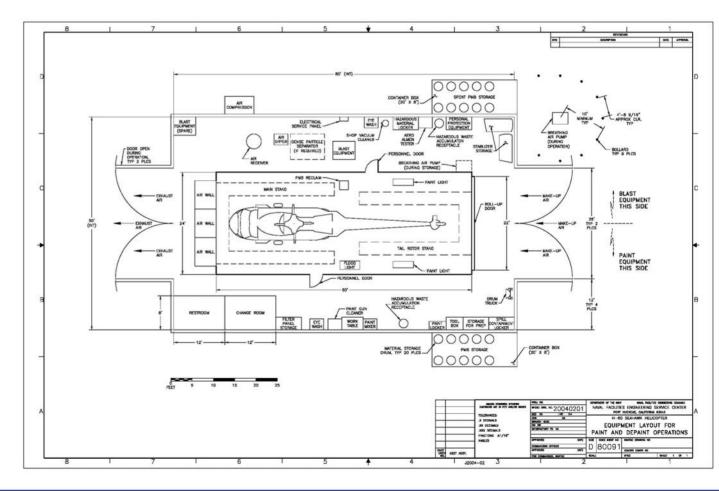
PMF AUXILIARY EQUIPMENT INCLUDES:

•EXPLOSION PROOF LIGHTING


PMB BLASTING EQUIPMENT

•AMBIENT AIR
PUMP

PMF
AIR WALLS
CONFIGURED
FOR
BLAST
OPERATIONS


PMF
AIR WALLS
CONFIGURED
FOR PAINTING

H-60 WRAP AROUND SAFETY STANDS

DESIGN FOR A PMF IN A PREENGINEERED BUILDING

Implementation Plan-Target Users/Participants

- COMNAVAIRLANT/AIRPAC (CDR McAtee/ Jim Gould)
- COMHELTACWINGPAC Maintenance Officer (Cmdr Price)
- Norfolk IMP/Nadep POCs (Cmdr Spearman/ Ron Cribbs)
- NAVAIR LMTCE WIPT (Dave Brock)
- NAVAIR 6.0 (Capt Cowards)
- NAVAIR 3.0/4.0 (LCDR Parker, Bruce Pollock/Doug Cook)
- NFESC/ PPEP (Melissa Green, D. Bojorquez & D. Price)

DEFINITION OF SUSTAINABILITY

- Normally means (LEED™, definition "Leadership in Energy & Environmental Design" Green Building Rating System, is the nationally accepted standard for green buildings developed by the USGBC membership).
 - Environmental benefits:
 - Enhance and protect ecosystems and biodiversity
 - Improve air and water quality
 - Reduce solid waste
 - Conserve natural resources
 - Economic benefits:
 - Reduce operating costs
 - Enhance asset value and profits
 - mprove employee productivity and satisfaction
 - Optimize life-cycle economic performance
 - Health and community benefits:
 - Improve air, thermal and acoustic environments
 - Enhance occupant comfort and health
 - Minimize strain on local infrastructure
 - Contribute to overall quality of life

LEEDS EVALUATION

- Current Norfolk Test Bed implements P2
 products but does not encompass the vast
 number of improvements needed to score
 high in a LEEDS evaluation.
- Conceptual version of an IMP secondary site scores well
- Rating of Conceptual site scored Spirit Bronze level (25 to 34 points out of possible 100)

Close

- Support the Navy's transition from the traditional OI&D maintenance to IMP phased maintenance
- Full commitment of sponsors (Link the various commands)
- Roadmap for follow-on IMP programs
- Improved aircraft availability and aircraft material condition
- Improved ESOH compliance leading to Improved Worker Effectiveness
- \$'s saved